Overview of the scenarios, methodology and key results

Tim Mandel, Fraunhofer ISI

23 February 2022

01 | Background

The need for model-based assessments in the scope of the EE1st principle

02 | Methodology

Models, assumptions and conceptual aspects

03 | Results

Building sector efficiency pays off, but there are limitations

04 | Discussion

Why the model-based results should be interpreted with caution

Background

The Energy efficiency first (EE1st) principle can be conceptualized as follows

1 DECISION OBJECTIVES: *Meet energy service demand and policy objectives*

The need for dedicated model-based assessments on the EE1st principle

EU energy & climate policy

- Net-zero emissions by 2050
- Interim targets by 2030
- EE1st prominently featured in existing (e.g. Governance Regulation) and planned legislation (e.g. EED recast)

Existing studies 1,2,3

- Building sector decarbonisation by 2050 requires 20% to 55% reduction in energy demand
- Heat pumps and district heating cover bulk of building heating demand

Research gap

- Assessing the societal trade-off between saving and supplying energy in the building sector ⁴
- Methodological limitations (e.g. spatio-temporal detail of models)⁵

¹ JRC (2020): Towards net-zero emissions in the EU energy system by 2050.

² McKinsey (2020): Net-Zero Europe. Decarbonization pathways and socioeconomic implications.
 ³ IEA (2021): Net Zero by 2050. A Roadmap for the Global Energy Sector.

⁴ Agora Energiewende (2018): Building sector Efficiency. A crucial Component of the Energy Transition.
 ⁵ ENEFIRST (2020): Review and guidance for quantitative assessments of demand and supply side resources in the context of the Efficiency First principle.

Investigating Energy Efficiency First in the EU building sector

QuestionWhat level of end-use energy efficiency in the EU building sectorQuestionwould provide the greatest societal benefit in transitioning to
net-zero GHG emissions?

- Integrated appraisal of demand- and supply-side resources
- Common objective: Net-zero GHG emissions by 2050
- Systematic accounting of costs and benefits
- Societal perspective (ambition)

Key properties of our analysis

Meet the modelling team of *enefirst*

Lukas Kranzl kranzl@eeg.tuwien.ac.at

Tim Mandel tim.mandel@isi.fraunhofer.de

Eftim Popovski e.popovski@irees.de

Andreas Müller mueller@eeg.tuwien.ac.at

Wolfgang Eichhammer wolfgang.eichhamer@isi.fraunhofer.de

Daniel Dreke d.dreke@irees.de

Sebastian Forthuber forthuber@eeg.tuwien.ac.at

Frank Sensfuss frank.sensfuss@isi.fraunhofer.de

Methodology

We investigate three scenarios for the EU building sector and energy supply

Energy system cost is the central performance indicator in the analysis

		Σ ENERGY SYSTEM COST (EUR ₂₀₁₈)						
		Capital costs ¹		Fuel costs ²		O&M costs		Other costs
	Buildings	 Building renovation Heating equipment Electrical appliances & lighting equipment 		 Wholesale costs for natural gas, fuel oil, coal, biomass 		 Maintenance costs for heating systems 		
4	Electricity supply	 Generation plants Electricity storage facilities Electricity networks 		 All relevant fuel costs (wholesale) 		 Import/export cost Fixed & variable O&M costs of supply assets (incl. ancillary services) 		 EU emissions allowance costs (ETS)
	District heating supply	 Boilers & cogeneration plants Heat storage facilities Heat networks 		 All relevant fuel costs (wholesale) 		 Fixed & variable O&M costs of supply assets 		 EU emissions allowance costs (ETS)
	Hydrogen supply	 Hydrogen electrolysers Methanation facilities 		-		 Import/export cost Fixed & variable O&M costs of supply assets 		

¹ 2% discount rate for transforming capital expenditures into annual capital costs ("annuities")

² Excl. taxes (valued added tax, environmental taxes, renewable taxes, nuclear taxes, etc.)

Multiple Impacts and Efficiency First: Uniting two complementary frameworks for decisionmaking in the EU energy system

• Conceptual background | Why taking the EE1st principle seriously means acknowledging multiple impacts

- Decision-support with Multiple Impacts | How different impacts can be aggregated to inform decisions in different venues
- Multiple impacts in practice | How the inclusion of impacts alters the outcome of cost-benefit analysis

Four models are coupled to assess energy system cost and other variables

Do you think the approach used is relevant to assess the system- and society-wide value of implementing EE1st in the building sector?

What do you think is the most important to investigate when considering the EE1st principle?

- The impacts of different depths and rates of building renovations
- The impacts that different levels of final energy demand can have on the needs in energy infrastructures (generation capacities, networks, ...)
- The impacts on cumulated GHG emissions over 2020-2050
- Other impacts (e.g., health, employment)
- A total system cost (combining the main impacts that can be monetized, and primarily the whole costs of supply-side and demand-side investments and operation)

Results

Check out the enefirst SCENARIO EXPLORER

Interactive dashboard and disaggregated outputs by Member State

Easy access and handling in MS Excel

To be released along with report in March 2022

Energy system cost

Results

- MEDIUMEFF is the most costefficient way to reach net-zero
- HIGHEFF scenario leads to additional cost until 2050
- Substantial cost savings for power generation & networks

Key message

Enhanced energy efficiency in buildings (MEDIUMEFF) slightly reduces energy system cost by lowering the need for energy supply.

Cumulative differential cost compared to LowEFF scenario for EU-27 by cost item (2020–2050) [bn EUR]