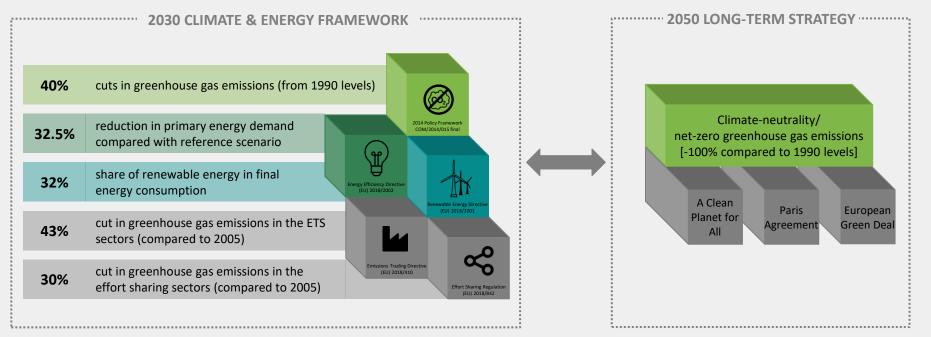
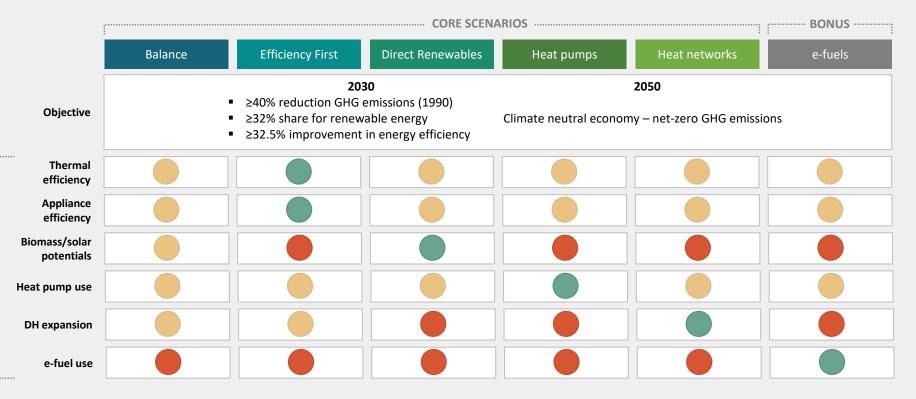
Session 2:

Research framework and methodology to analyse the long-term role of « Efficiency First » for Europe's building sector


> Tim Mandel Fraunhofer ISI

17 June 2020 enefirst.


(1) Define objective

Research question: What is the role of building efficiency in pathways towards EU's 2030 and 2050 climate targets?

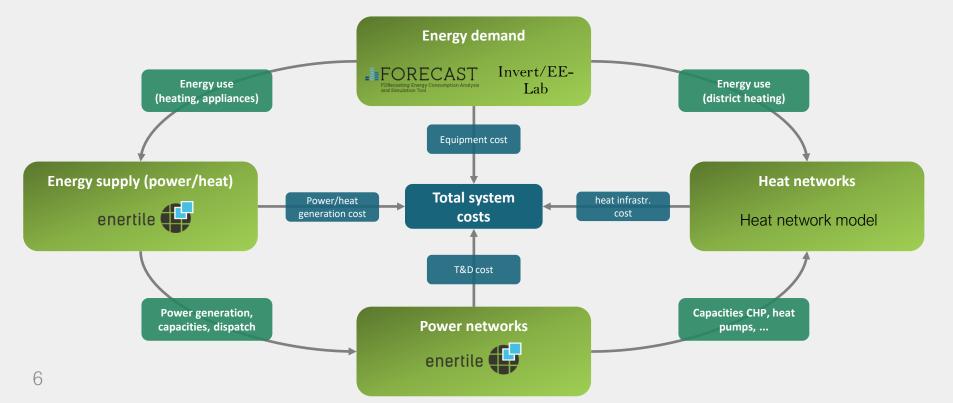
(2) Define scenarios

Five core scenarios plus one bonus scenario are under consideration

(2) Define scenarios

While the focus is on the buildings sector, we still need a cross-sectoral perspective

				BONUS						
		Balance	Efficiency First	Direct Renewables	Heat pumps	District heating	e-fuels			
	Objective		20302050≥40% reduction GHG emissions (1990)≥32% share for renewable energyClimate neutral economy – net-zero GHG emissions≥32.5% improvement in energy efficiency							
	Energy demand in other sectors		Ambitious GHG emission reductions in accordance with long-term climate neutrality (transport, industry, land-use, agriculture)							
CTORAL CTIVE	Electricity supply	Optimized capacity expansion (generation, transmission, distribution, storage) according to GHG emission reduction gap								
CROSS-SECTORA PERSPECTIVE	District heat supply	Optimi	ized deployment/dispatch Limited netwo	n of district heating techno ork expansion	hnologies Higher netwo expansion		see scenarios left			
	e-fuel supply		Generation according to demand and potentials; imports not allowed							


(3) Define model setup

Four models will be employed in the system analysis

model	FORECAST FORecasting Energy Consumption Analysis and Simulation Tool	Invert/EE-Lab	enertile 手	Heat network model
Partner	Fraunhofer ISI	TU Vienna	Fraunhofer ISI	IREES
Model type	Bottom-up energy demand simulation	Bottom-up energy demand simulation / optimization	Bottom-up energy supply optimization	GIS-based bottom-up network optimization
Sectors [end-uses]	 Residential [Electrical appliances, lighting, cooling, cooking, other] Non-residential [] 	 Residential [Space heating, hot water] Non-residential [] 	 Power/heat capacity expansion / system operation T&D capacity expansion 	 Heat network expansion
Resolution	 temporal: yearly spatial: country (EU-27) 	 temporal: yearly spatial: country (EU-27) 	 temporal: 8760 h/a spatial: 100x100 m grid 	 temporal: yearly spatial: 100x100 m grid

(3) Define model setup | (5) Calculate total system costs

By coupling all four models, total system costs can be calculated

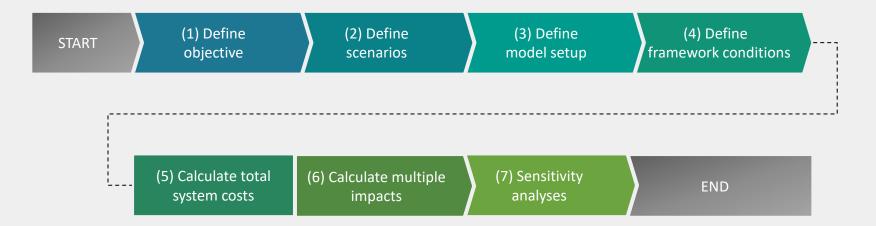
(4) Define framework conditions

Framework conditions and sectoral projections will be assembled from established studies

...

Possible reference data:

- EU Reference Scenario 2016
- In-depth analysis on *Clean Planet for all* Communication


(6) Calculate multiple impacts

Our calculation will be guided by - inter alia - the COMBI approach

	\bigcirc	~	ဂိိ	500	贫	
COMBI	Air pollution	Macro-economy	Energy poverty	Resource	Energy security	
Impact indicators	 Human health Ecosystem acidification Ecosystem eutrophication Emissions 	 GDP increase Employment Public budget Fossil fuel prices Abatement costs Trade effects Sectoral shifts 	 Thermal comfort/winter mortality Asthma burden Active days Workforce performance 	 Material footprint Fossil fuels Minerals Metal ores Biotic raw materials Unused extraction Direct carbon emissions Carbon footprint 	 Energy intensity Import dependency Aggregated energy security Avoided power investment costs Reserve capacity rate 	
Quantification methodology	GAINS model	General equilibrium modelling	COMBI model	Material flow accounting (MFA)	Energy balance model	

Conclusion

