enefirst.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 839509. The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

Implementing "Efficiency First" in EU and national policies

EUSEW extended programme 21st October 2021

Definition of Energy Efficiency First (E1st) in the context of the ENEFIRST project

'Efficiency First' gives priority to demand-side resources

whenever they are more cost effective from a societal perspective

than investments in energy infrastructure

in meeting planning and policy objectives.

It is a decision principle that is applied systematically at any level

to energy-related investment planning

and enabled by an 'equal opportunity' policy design.

For more details, see the <u>first ENEFIRST report</u> about background analysis

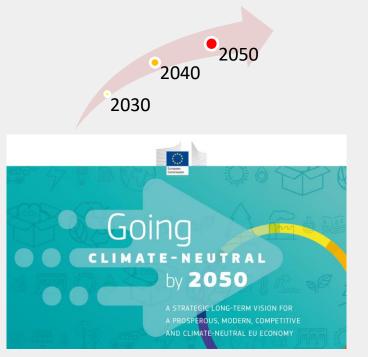
With a societal perspective

+

Multiple impacts

REDUCED INVESTMENT NEEDS

IMPROVED HEALTH


. . . **TO 100% RES**

REDUCED

ENERGY

POVERTY

Long-term perspective

Promoting an integrated perspective of E1st

.. to overcome silo thinking in policy making and implementation

.. to help policy officers, market actors and end-users to take other perspectives and consider implications for the whole energy system

.. to show how EU legislation should be better harmonized to enable integrated energy planning of supply- and demand-side options

From implementation Maps to Policy Guidelines

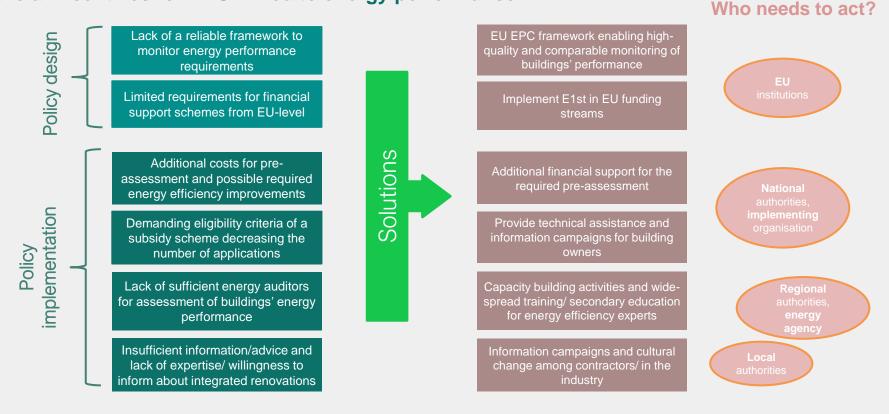
Buildings	Power sector	District heating
Fabric first approach	Power market rules	 Integrated district heating planning and operation Network access for third-party waste heat providers
 Financial incentives for renewable energy systems linked to energy performance 	 Transmission and distribution utility provisions Transmission and 	
 Planning instruments for investments in buildings 	distribution incentivesDynamic tariff design	

+ other policy approaches identified in (ENEFIRST 2021)

Efficiency First example – Investment in RES linked to energy performance

Heat Pump Grant - SEAI, Ireland

→ Financial support is granted if minimum energy performance levels of the building are met (E1st conditionality)


Benefits:

- ✓ Adequate sizing
- Incentive to improve the building envelope with benefits for the indoor climate and residents' health
- Positive impacts on the whole energy system

- Concept of Fabric first used in most Irish support programmes
- Preventing lock-in effects leading to high investments later on
- Technical assistance and additional support for potential renovations is important

Main barriers to the design and implementation of E1st Financial incentives for RES linked to energy performance

From Implementation Maps to Policy Guidelines

Energy Efficiency First as a way to promote integrated approaches..

...in energy planning

Integrated energy modelling

Integrated energy infrastructure planning

Integrated planning of **energy demand & supply** in buildings

.. in energy-related investments

Considering **multiple impacts** in investment decisions

E1st in public financing

E1st in end user investment decisions

Energy market regulations

Complementary approaches to implement E1st

+ short analysis of the **Fit-for-55 July** package

Integrated planning of energy demand & supply in buildings

Individual planning tools in building renovation investments (e.g., building passports)

- Including E1st calculations and provisions in planning instruments
- Helping owners to make better informed decisions

Municipal heat & renovation roadmaps

- Assessing the potential for energy-efficient and decarbonised heat supply given the estimated demand
- Inform public authorities and utilities
- Local heat roadmaps and renovation strategies should be linked

Approaches included about E1st in public financing

Integration of E1st principle into EU funding streams

- Making E1st assessment a prerequisite for higher funding
- Minimum share of budget earmarked for demand side measures

Carbon revenue recycling towards energy efficiency Earmarking carbon revenues for energy efficiency measures

Public procurement

- Streamlining public procurement rules to include E1st
- Using public procurement as role model and good practice example

Approaches included about E1st in end-user investment decisions

Financial incentives for RES linked to energy performance

Fabric first approach

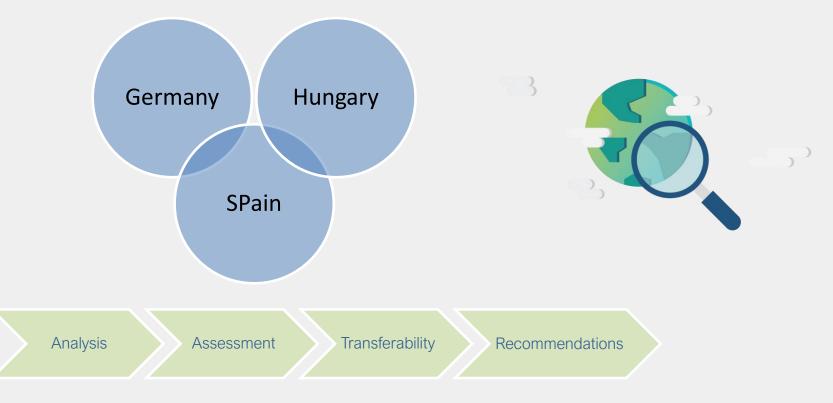
Minimum energy performance standards (MEPS)

Dynamic tariffs

 Investment into renewable energy installations should be subject to a minimum energy performance level of the building

- Achieve ambitious energy performance standards before addressing the heating system or building services
- Prioritize demand side measures in performance standards
- Set monitoring for demand reductions
- Smart use of existing energy networks
- Incentivise consumer choices consistent with optimal choices from a power system perspective

Complementary measures to implement E1st


Cross-cutting issues to promote the concept of E1st across policy areas and among different stakeholder groups

Increase data availability and digital monitoring Build institutional capacities & raise awareness

Complementary measures to make Energy Efficiency First a reality Overcoming silo thinking in policymaking and professional fields

Educating and empowering the consumer on E1st

Upcoming work on national policy implementation and transferability

The ENEFIRST project provides model-based assessments of the « Efficiency First » principle at two levels

Level 1: Energy system analysis for EU-27

- **Research question:** What is the contribution of energy efficiency in the building sector to achieving European climate targets at the lowest possible cost?
- Spatial scope: Member States
- Timeframe: 2020 2050

Level 2: Local case studies for 3 Member States

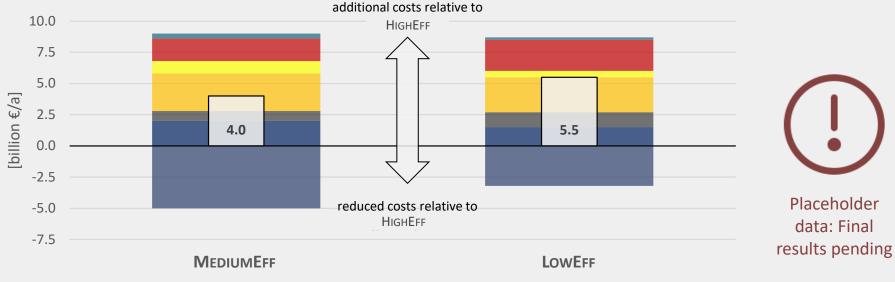
- Research question: What is the contribution of energy efficiency in the building sector to achieving local planning targets?
- Spatial scope: Urban areas (cities, neighborhoods).
- Timeframe: 2020 2050

 For more details:
 Implication

 register for free to the conference EMP-E 2021
 Implication

 Presentation of ENEFIRST modelling on Wednesday 27th of October
 Implication

 in parallel session #6 from 2 to 3.30 pm
 Implication


 by Tim Mandel, Fraunhofer ISI
 Implication

The system analysis (Level 1) considers **three scenarios** that meet climate targets for the years 2030 and 2050 in different ways

	SCENARIOS			
	Low efficiency in buildings (LowEFF)	Medium efficiency in buildings (MEDIUMEFF)	High efficiency in buildings (HIGHEFF)	
Planning objective	2030 ■ ≥55% reduction GHG emissions ■ ≥32% share for renewable energy ■ ≥32.5% improvement in energy of	Climate neutral econom	2050 ny – net-zero GHG emissions	
Thermal efficiency	Low component requirements; low renovation rate	Moderate component requirements; moderate renovation rate	Strict component requirements; ambitious renovation rate	
Appliance efficiency	Low minimum energy performance standards	Medium minimum energy performance standards	Strict minimum energy performance standards	
Building H&C equipment	Large installed capacities; balanced technology deployment	Medium installed capacities; balanced technology deployment	Small installed capacities; balanced technology deployment	
Power supply	Large installed capacities; balanced technology deployment	Medium installed capacities; balanced technology deployment	Small installed capacities; balanced technology deployment	
District heating supply	Large installed capacities; balanced technology deployment	Medium installed capacities; balanced technology deployment	Small installed capacities; balanced technology deployment	
Network expansion	Large installed capacities	Medium installed capacities	Small installed capacities	
Hydrogen/ e-fuel use		Limited deployment		

We highlight the **societal value of « Efficiency First »** by comparing the three scenarios in terms of total system cost and, later, multiple impacts

- Building envelopes
- Fuel costs in buildings
- Electricity network expansion and operation
- Gas network expansion and operation

- Building equipment
- Electricity and district heating generation

- Heat network expansion and operation
- □ Total cost difference

TIME FOR DISCUSSION

- ✓ Is the E1st principle already being widely implemented?
- ✓ How can public funding be streamlined with E1st?

✓ Who are the key stakeholders for E1st in energy system integration?

- ✓ Should municipalities be involved more closely?
- How can we overcome silo thinking?

Further reading: <u>Report on defining and contextualizing the E1st</u> <u>principle</u>

Report on international experiences with E1st

Report on barriers to implementing E1st in the EU-28

Report on priority areas of implementation of the Efficiency First principle in buildings and related energy systems

Report on implementation maps on barriers and success factors for E1st in buildings

Coming soon: Guidelines on policy design options for implementation of E1st in buildings

Thank you!

Senta Schmatzberger

BPIE

senta.schmatzberger@bpie.eu

Jean-Sébastien Broc Project coordinator jsb@ieecp.org

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 839509. The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.